On the inverse Sturm-Liouville problem for spatially symmetric operators, I
نویسندگان
چکیده
منابع مشابه
Inverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملInverse Sturm-Liouville problem with discontinuity conditions
This paper deals with the boundary value problem involving the differential equation begin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x), a_1 , a_2$ are rea...
متن کاملinverse sturm-liouville problem with discontinuity conditions
this paper deals with the boundary value problem involving the differential equationbegin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0),end{equation*}where $q(x), a_1 , a_2$ are real, $qin l...
متن کاملInverse spectral theory for Sturm-Liouville operators with distributional potentials
We discuss inverse spectral theory for singular differential operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential expressions of the type τf = 1 r ( − ( p[f ′ + sf ] )′ + sp[f ′ + sf ] + qf ) , where the coefficients p, q, r, s are Lebesgue measurable on (a, b) with p−1, q, r, s ∈ Lloc((a, b); dx) and real-valued with p 6= 0 and r > 0 almost everywhere on (a, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1985
ISSN: 0022-0396
DOI: 10.1016/0022-0396(85)90103-2